f

What's Up From Below?

An Overview of Recent Advances In BINSEC
Frédéric Recoules

5 00 =+ 00 W
c v

Sébastien Bardin

P
e MO O™

- -~

KLEE workshop 2024

This talk in a nutshell

Goal
Introduce and discuss some design choices and
recent improvements of the BINSEC SE

m Hope it can trigger discussions

m Beware: strongly biased toward binary code analysis

=

iy

Highlights
= Introduction to BINSEC platform
m Under the Hood
m Path predicate & Memory model
m Efficient use of SMT solvers
= JIT specialization of the interpreter
m Plugin extensibility

w

4

3
08
1
8

f

o -

- m
w0 ™0

- >

o0

Monday 15t April

A need for binary level analysis

SOURCE BINARY
CODE COMPILER CODE COMPUTER
COTS

010011000
001010110
—’ —’ 110001010
010100111
101101110
111011000

What You See
Is Not What You Execute)

il

LEGACY (ODE

“IHEMIDA

| Malware |

@ KLEE workshop 2024 Monday 15t April 3

BINSEC in a nutshell (since 2012)

Security critical components

binary lifting, Fault injection

qu zg R, CFG, call graph, Vulnerability « Side channel attack
Yices2 .

symbolic execution, Assessment
static analysis, ..

« Attacker model

Symbolic engine

Supply chain

- Advanced fuzzing

Bug finding)
- Test case generation

Malware comprehension

\ UNISIM SWW - Copture The Flag JK

. \\’/ Virtual - Deobuscation -
=7 Platformfor « Decompilation

@ KLEE workshop 2024

Engineering

Monday 15t April 4

Symbolic execution in a nutshell

UNDER APPROX.

m Correct

Il
4 S

int main () {
int x = input();

s a
o

int y = input(); = Incomplete

int z = 2 % y; (maybe k-complete)
if (z == x) {
if (x >y + 10)
failure;
¥

G:={X—>O(,y—>B,Z—>2[3}

Success,

>

(p:=T/\ZB¢aI//

@ =TA2=aAa>B+10

----- ' o

@ KLEE workshop 2024 Monday 15t April 5

Theoretical and practical limits

A Constraint solving
(query cost)

A Search space
(# paths)

@ KLEE workshop 2024 Monday 15t April 6

Theoretical and practical limits

A Constraint solving

C] (# queries)

(] (] q

lel Q@Q Q@Q Q@%

A Constraint solving
(query cost)

A Exploration speed

A Search space
(# paths)

@ KLEE workshop 2024 Monday 15t April 6

Binary code difficulties

CFG RECONSTRUCTION
m CFGis hardly known in advance
s dynamic jump can go everywhere
m self-modifying code

NO TYPE
m NO object boundary
m any value can be used as an address
m memory is a single flat array of bytes

F

UBIQUITOUS MEMORY

m No variable scope

m unconstrained store can clobber
everything

& - ™

= o
EN I N

— o

KLEE workshop 2024

l m The BINSEC designs

= Introduction to BINSEC platform

s Under the Hood
= Path predicate & Memory model
m Efficient use of SMT solvers
= JIT specialization of the interpreter
= Plugin extensibility

@ KLEE workshop 2024 Monday 15t April 8

& O o
= o

& M

 ~
= o
0 & b~

TR e B - -

D.Alu.D.Ip L .D.. 0.5H.. .H.0.H
N0 1 H, ., $x+H¥ tIN,. W9,y
H.tS. dH34x({ H {
™

® D

=

D §
48 (
2
3
0

- ™ o~

<
(=]

“

Gl

FHM

- S
w D W
L

IS

@ —= Mmoo

mov edx, define-fun 0 BitVec
shl edx, cl declare-fun 0 BitVec
or eax, edx def%ne—fun 1 BitVec bvshl 0 0
define-fun 0 Bool (= edxl
add ecx, :
declare-fun 0 BitVec
?mp ecx, define-fun 1 BitVec bvor 0 1
je define-fun 1 Bool (= 1
define-fun 1 BitVec bvadd 0
define-fun 2 Bool (= 1
define-fun 3 Bool (= 1

assert 3
check-sat

Revisiting path predicate construction

The good old one Reworked symbolic store
m One definition per assignment * mocaml Do less, get more !
+ Powertulpreprocessing

m Local rewriting rules Natural sharing (all values are reference)

.) e e . Automatic garbage collector
= Single-use value propagation / inlining
= Avoid formula size explosion = Greedyinlining (DAG)
= Pruning m Keep only the latest definition

m Fully enable rewriting rules

= Pruning for free (GC)

ik = m Lazy hash consing

m Structural comparison melds equal

CCE 0 sub~terms (union-findike)

Well defined Too many definitions m Introduce only essential definitions during
optimization passes Intermediate variables export (SMT
disable rewriting

s Memory simplification

@ KLEE workshop 2024 Monday 15t April 10

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

(ebp - R

- A J

(ebp - R

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

(ebp - R

- A J

(ebp - R

read ebp+8

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

(ebp - R

- A J

(ebp - 1.4_.

read ebp+8

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

[ebpt+4 « £ |—e

- A J

(ebp - R

read ebp+8

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

Read-over-Write, Write-over-Write
Astract domain disequality resolution

[ebp-4

[ebp+0

[eax —

A
[ebp+0
A
[ebp+8 ~ & |—e
A
(ebptd — e |
A
[ebp+0

read ebp+8

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

(ebp - R

- A J

(ebp - R

read ebp+8 .

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

(ebp - R

- A J

(ebp - R

I

read ebp+8 .
read ebp-4

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

(ebp - R

- A J

(ebp - 1.4_.

I

read ebp+8 .
read ebp-4

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

(ebp - R

- A J

(ebp - R

. A J

[ebpt+4 « £ |—e

- A J

(ebp - R

I

read ebp+8 .
read ebp-4

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

Read-over-Write, Write-over-Write
Astract domain disequality resolution

[ebp-4

[ebp+0

[eax —

A
[ebp+0
A
[ebp+8 ~ & |—e
A
(ebptd — e |
A
[ebp+0

I

read ebp+8 .
read ebp-4

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — |

- A J

| ebp+0 « v |—e
A

(ebp - R

. A J

(ebp - R

- A J

(ebp - R

I

read ebp+8 .
read ebp-4

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

L ebp -) Read-over-Write, Write-over-Write
A

p .\ Astract domain disequality resolution

ebp -

. A J

[eax — 14—.

- A J

(ebp - R

- A J

(ebp - R

. A J

(ebp - R

- A J

(ebp - R

I

read ebp+8 .
read ebp-4

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

ebp —

L) Read-over-Write, Write-over-Write
Astract domain disequality resolution

ebp -

eax — —@

ebp —

ebp -

ebp -

ebp —

I

read ebp+8 . eax € [1024,409¢6]
read ebp-4 ebp > 16384

@ KLEE workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Monday 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

ebp —

L) Read-over-Write, Write-over-Write
Astract domain disequality resolution

ebp — < —0

eax —

ebp —

ebp -

ebp -

ebp —

I

read ebp+8 . eax € [1024,409¢6]
read ebp-4 ebp > 16384

@ KLEE workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Monday 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS
ebp —

L] . Read-over-Write, Write-over-Write
Astract domain disequality resolution

ebp -

eax —

ebp —

ebp -

ebp -

ebp —

I

read ebp+8 . eax € [1024,409¢6]
read ebp-4 ebp > 16384

@ KLEE workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Monday 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

ebp —

L) Read-over-Write, Write-over-Write
Astract domain disequality resolution

ebp -

eax —

read ebp+8 . eax € [1024,409¢6]

read ebp-4 ebp > 16384

@ KLEE workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Monday 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

ebp —

L) Read-over-Write, Write-over-Write
Astract domain disequality resolution

ebp -

. A J 2
eax —
- 7y g MEMORY LAYER

_ebp —) Base address with Offset-value map
A

e ebp — N 3

- A J

f ebp —) WRITE HISTORY
A

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
- >
read ebp-4 2 = 60 Iterative memory refinement lemma

read ebp+8

@ KLEE workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Monday 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS
_ebp .) -] Read-over-Write, Write-over-Write
p N Astract domain disequality resolution

ebp — [

. A J 2
eax —
- 7y g MEMORY LAYER

_ebp —) Base address with Offset-value map
A

e ebp — N 3

- A J

f ebp —) WRITE HISTORY
A

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
- >
read ebp-4 2 = 60 Iterative memory refinement lemma

read ebp+8

@ KLEE workshop 2024 Farinier et al,, Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Monday 15t April 1

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

Read-over-Write, Write-over-Write
Astract domain disequality resolution

. A J >
(1 A
ebp - ®)

. A J 2
eax —
- 7y g MEMORY LAYER

— A

_ebp —) Base address with Offset-value map
A

e ebp — N 3

- A J

f ebp —) WRITE HISTORY
A

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
- >
read ebp-4 2 = 60 Iterative memory refinement lemma

read ebp+8

@ KLEE workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Monday 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

_ebp -) 9 [-) Read-over-Write, Write-over-Write
X [\ o . .
p .\ — Astract domain disequality resolution

ebp -
— = (- 2

[eax — |) ’

-) ’ I MEMORY LAYER

_ebp —) Base address with Offset-value map
A

e ebp — N 3

- A J

f ebp —) WRITE HISTORY
A

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
Iterative memory refinement lemma

read ebp+8

read ebp-4 ebp > 16384

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

_ebp -) 9 [-) Read-over-Write, Write-over-Write
X [\ o . .
p .\ — Astract domain disequality resolution
ebp -
e i :
[eax — |) ’
- X ’ MEMORY LAYER

L ebp — J ? [-] Base address with Offset-value map
A
e ebp N 3

WRITE HISTORY

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
- >
read ebp-4 2 = 60 Iterative memory refinement lemma

ebp -

read ebp+8

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

_ebp -) 9 [-) Read-over-Write, Write-over-Write
X [\ o . .
p .\ — Astract domain disequality resolution
ebp -
e i :
[eax — |) ’
- X ’ MEMORY LAYER

_ebp —) 4? (—] Base address with Offset-value map
A
(ebp)

4] 3
ebp+4 -~

WRITE HISTORY

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
Iterative memory refinement lemma

read ebp+8

read ebp-4 ebp > 16384

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

_ebp -) 9 [-) Read-over-Write, Write-over-Write
X [\ o . .
p .\ — Astract domain disequality resolution
ebp -
e i :
[eax — |) ’
- X ’ MEMORY LAYER

L ebp - J 4? Base address with Offset-value map
A
(ebp)

f)
- % 3
ebpii -

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
Iterative memory refinement lemma

read ebp+8

read ebp-4 ebp > 16384

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

Revisiting the memory (Farinier et al. 18)

MEMORY SIMPLIFICATIONS

_ebp -) 9 [-) Read-over-Write, Write-over-Write
X [\ o . .
p .\ — Astract domain disequality resolution
ebp -
e i :
[eax — |) ’
- X ’ MEMORY LAYER

L ebp - J 4? Base address with Offset-value map
A
(ebp)

f)
- % 3
ebpii -

Sequential list of layers of
ebp — non-compadrable base addresses

eax € 1024, 109]

File backed chunk of initial memory
Iterative memory refinement lemma

read ebp+8

read ebp-4 ebp > 16384

@ KLEE Workshop 2024 Farinier et al., Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing, LPAR 2018 Mondgy 15th April n

l m The BINSEC designs

= Introduction to BINSEC platform

s Under the Hood

s Path predicate & Memory model

n Efficient use of SMT solvers

= JIT specialization of the interpreter
= Plugin extensibility

@ KLEE workshop 2024 Monday 15t April 12

Avoid calling the SMT solver

@ KLEE workshop 2024 Monday 15t April 13

Avoid calling the SMT solver

— . ——— 4 @ — @ @ ot 1 L 1

SMT SOLVER
Generate a new model

@ KLEE workshop 2024 Monday 15t April 13

Avoid calling the SMT solver

SMT SOLVER
Generate a new model

@ KLEE workshop 2024 Monday 15t April 13

Avoid calling the SMT solver

SMT SOLVER
Generate a new model

@ KLEE workshop 2024 Monday 15t April 13

Avoid calling the SMT solver

SMT SOLVER
Generate a new model

@ KLEE workshop 2024 Monday 15t April 13

Avoid calling the SMT solver

SMT SOLVER

Generate a new model

UNDER APPROX.

Along a path

Propagate the previous model
Halve the solver queries

Kapus et al., Pending Constraints in Symbolic Execution for Better Exploration and Seeding, ASE 2020
Bardin et al, Structural Testing of Executables, ICST 2008
Williams et al,, On-the-Fly Generation of K-Path Tests for C Functions, ASE 2004

@ KLEE workshop 2024 Monday 15t April 13

Avoid calling the SMT solver

%
| | x x
. . : e . . I , , - .
% S 2 4 4 *®
[e~ — —1 —_ — — — — —1 — — — —
x| | X | | [||| X|| || || X
SMT SOLVER UNDER APPROX.

Generate a new model Along a path .
Propagate the previous model

Halve the solver queries

Kapus et al., Pending Constraints in Symbolic Execution for Better Exploration and Seeding, ASE 2020
Bardin et al, Structural Testing of Executables, ICST 2008
Williams et al,, On-the-Fly Generation of K-Path Tests for C Functions, ASE 2004

@ KLEE workshop 2024 Monday 15t April 13

Avoid calling the SMT solver

SMT SOLVER
Generate a new model

UNDER APPROX.
Along a path

Propagate the previous model
Halve the solver queries

OVER APPROX.
Along a path
Discard invalid constraints

Kapus et al., Pending Constraints in Symbolic Execution for Better Exploration and Seeding, ASE 2020
Bardin et al, Structural Testing of Executables, ICST 2008

Williams et al,, On-the-Fly Generation of K-Path Tests for C Functions, ASE 2004

@ KLEE workshop 2024 Monday 15t April 13

14

.m
O
<
£
o)
>
n O
©
c
O
>
E } S
(]
=
s 9
s £ 3 £
- ()]
o) €, %
= - 2 £
=0
) c > 2
O Eow
eSll
mm o 225
L Mn
wn I H O
= ef.ﬂy
oM O N =
OdC%.hb
O 5 O =
t dUIIS
noetcn
T 5 c 0
@] O 90 a0
5 O cg ooy
OCL FEE
UUUUUU
.me =
UIMIIINIUUJ
T =2 =
n n
<
N
o
~N
O
(@)
c
(%]
V4
S
O
=
L
Ll
—
V

Specialize the symbolic interpreter

SWITCH XCHG RAX, RDX
X RAX X RAX
xcHo 49— ADD >4
LANGUAGE@ XCHG X, Y ° ADD X, Y

g KLEE workshop 2024 Recoules et al, Linterpréte, le JIT et la licorne, JFLA 2024

PRIMITIVES

Monday 15t April

15

PARTIAL
SPECIALIZATION

Specialize the symbolic interpreter

SWITCH XCHG RAX, RDX
X RAX X RAX
xcHo 49— ADD >4
LANGUAGE@ XCHG X, Y ° ADD X, Y

g KLEE workshop 2024 Recoules et al, Linterpréte, le JIT et la licorne, JFLA 2024 Monday 15th April 15

PRIMITIVES

XCHG RAX, RDX
ADD RAX, RDX

[] [] [] [)
Specialize the symbolic interpreter
SWITCH Qxcue RAX, RDX GADD RAX, RDX
XCHG 4~ ADD > G-~
LANGUAGE@ XCHG X, Y ° ADD X, Y

g KLEE workshop 2024 Recoules et al, Linterpréte, le JIT et la licorne, JFLA 2024 Monday 15t April 15

PARTIAL
SPECIALIZATION

@

0000

PRIMITIVES

XCHG RAX, RDX
ADD RAX, RDX

o
o
@

A
Challenge licorne: a difficulty thatis not virtual &

QEMU performs just
in time compilation
A write in memory
can change code !

FRANCE CYBERSECURITY
CHALLENGE 2022

Self-modifying Billion of
Shared library code instructions
Binary is not self-contained ? Emulate an emulator ?
4 allow starting from a s need to be twice as
process shapshot! performant! m

(core dump) multi-architecture CPU

emulator framework
(based on QEMU)

@ KLEE workshop 2024 Monday 15t April 16

A
Challenge licorne: a difficulty thatis not virtual &

QEMU performs just
in time compilation
A write in memory
can change code !

FRANCE CYBERSECURITY
CHALLENGE 2022

Self-modifying Billion of
Shared library code instructions
Binary is not self-contained ? Emulate an emulator ?
4 allow starting from a s need to be twice as
process shapshot! performant! m

(core dump) multi-architecture CPU

0.6 0.8 0.84JIT [romenon

@ KLEE workshop 2024 ~3 h] O m24 7m] 5 Monday 15t April 16

= Introduction to BINSEC platform

s Under the Hood

z m The BINSEC news

p -
o he
o) o
°c &
mmm
>0 £
9 > o
€ o<
(O Z
it
MWo
&Smy
)
eflol
ggxs8
T >0 0
oo &
@
o..@o..w
S0 o X
oEE O
Dl_LLJn
(o))
Illu
(-
||

17

Monday 15t April

KLEE workshop 2024

SE instrumentation with plugins

SCRIPT SYNTAX BUILTIN 'NSTRRUO“:,'?..':;QT'°" EVENT CALLBACK

Extensible parser copes Extension mechanism makes Disassembly provides newly Hook registration monitors
for brand new initialization advanced Builtin function discovered code fragment path related event like
commands, instructions written in host language inspection and mark-up forking or ending

or syntactic sugar OCaml possible procedures

@ KLEE workshop 2024 Monday 15t April 18

A
SE instrumentation with plugins &

SCRIPT SYNTAX BUILTIN 'NS“R"O‘f,'?r'f;QTmN EVENT CALLBACK

Extensible parser copes Extension mechanism makes Disassembly provides newly Hook registration monitors
for brand new initialization advanced Builtin function discovered code fragment path related event like
commands, instructions written in host language inspection and mark-up forking or ending

or syntactic sugar OCaml possible procedures

checket
AES-CBC-bearssl (BS) 16.77 0.31
AES-GCM-bearssl (BS) 53.32 0.48
PolyChacha-bearssl! (CT) 9.72 0.8
PolyChacha-mbedtls 18.62 0.49
PolyChacha-openssl (EVP) g 2155
Chacha20-openssl| 0.77 0.09

(-]

g KLEE workshop 2024 Monday 15t April 1

Conclusion

xmas ‘ = Newsymbolic engine Bﬂckto UprISIng

edition = Write-ups & tutorials school s Constanttime

" CTF examples - 780 " Incremental solver
[] X86_64 n Custom array [] JIT speciqlizqtion
= ARMV7 Easter = RISC-V64 Twin = Plugins
= ARMVE hu nt = Xx86 AVX extension Q’j = PowerPC64
= BBSE = Exploration board Souls -

Ofe0
[=]

e O o o o o o o o o o o o °o o °o °o °o °o oo °o °o °o °©o °o °o oo °o o o
12/2021 04/2022 09/2022 02/2023 07/2023 05/2024

@ KLEE workshop 2024 Monday 15t April 19

