/

Concolic Program Repair

Detecting and discarding over-fitting patches via systematic co-exploration of the patch space and input space

Ridwan Shariffdeen Yannic Noller Lars Grunske Abhik Roychoudhury

Typical Repair Workflow

analyzed data 7L fault location

I=——
bug report debugging N

nm (, < />::
write patch

analyze D
RS - (O3 repaired program

; ; test suite

test results

é Concolic Program Repair
validation Ridwan Shariffdeen

Automated Program Repair

<l> _b
test suite @ — ; /.
g </>— .
bug report =T =
debug generate validate
APR

=
1 C

o
—J Concolic Program Repair

Ridwan Shariffdeen

list of patches

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Trust Enhancement Issues in Program Repair

Yannic Noller
National University of Singapore

yannic noller@acm.org

Xiang Gao
National University of Singapore
groxiang@comp.nus.edu.sg

ABSTRACT

Automatd progran e s n cmerping eyt ks
to automatically rectify bugs and vulnerabilities using learning,
A v ki o oty e
palches is necessary for achieving greater adoplion of program

repair. Towards this goal, we survey more than 100 software practi-

trust in automatically generated paiches. Based on the feedback

Ridwan Shariffdeen’
National University of Singapore
Singapore
ridwan@comp.nus edu.sg

Abhik Roychoudhury

National University of Singapore

Singapore
abhik@comp.nus.edu.sg

ject [44].
as Bloomberg; [17). While all of these are promising, large-scale
‘adoption of program repair where it s well integraled into our

programming environments i considerably out of reach as of now.
In this article, we reflet on the impediments towards the usage

developers. There can be many challenges
ot e doptin of pogre el e sy, b
2]

o developer preferences,

Sarch spaccs 12, 2, 2,31, Sy, there have been various

p period of 1 hour. pe from
our qualitative study and the observations from our quantitative

patches from one version to another [41) — to cover various use
or scemarios of repair
Surprisingly, there is vry ltle literature or systematic studies

ficaly producing.

what change

search space. Moreover, while additional developer inputs are valu-

fram repair p
onils wide-scale adoption? Part of the gulf in terms of lack of rust

generating,
be inlerested in a significant human-io-the-1oop interaction.
ACM Reference Format

of the program is not formally documented, i is hard to trust that

Overal, we seek to examine whether the developer’s reluctance

s Noller, SpE—
e program repair from nol elying on au
freceom SoftareEnginering 0CSE 22) May 2125, 2022, iburch, P, penerid code T implicaions
USA ACKL New Yok AY,USA- 13 pags becauseof I based pair programmine,

351000

1 INTRODUCTION

10 be accomplished via automated code generation.
I this artcle, we specifcally study theissues iavolved i enhanc-
ing,develop Towards

p gies [14] are getting
tention. s .
the automated f
book [28], automated repair bots as evidenced by the Repaimator

e
Aermate cand.groxieg> g o

ing of mobile apps in the SapFix project in Face-

this goal, we first settle on the research questions related to de-
veloper trust in automatically generated paiches. These questions

‘automalic repair technologies, and (b) understanding the possible
shortfall of existing program repair technologies with respect to
developer expectations. To understand the developer expectations

RrO1 auto-
APR). and how do

e e e I
EECrs o P P
ity ,__,,,,,, Publicatonrighes e 10 ACM.
Pt

NUS

National University
of Singapore

RQ2 Can software (kwmun provide additional inputs that
= g e s it
ind o putscan they provid

it oo ity copdod gl com

=

PITTSBURGH, PENNSYLVANIA

ICSE 2022

INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING

rust Enhancement Issues in Program Repair

Yannic Noller, Ridwan Shariffdeen, Xiang Gao, Abhik
Roychoudhury

IEEE/ACM 4/4th International Conference on
Software Engineering (ICSE) 2022

Concolic Program Repair

Ridwan Shariffdeen

Developer Survey - Demographics

1-2 years 1011

103 software practitioners 2-5 years | 145
> 5 years | 147
89% with 2+ years experience 0 S 10 15 20 25 30 ﬁémb%@ of Ll}éspo%osez

/5% Software Developers Software Developer | |78
Software Architect 113
35 questions on trust in APR QA Engineer a7

Research Engineer []3
Tech Lead b2

0 10 20 30 40 3QumBEr of Resp¥hsi

Concolic Program Repair
Ridwan Shariffdeen

Insights from Developer Survey

Additional test-cases improves trustworthiness of generated pa

m _ Unoat | S
There is a newer version of this

January 27,2022 oataset] open Access |
Replication Package for "Trust Enhancement
Issues in Program Repair”

Developers are willing to provide specification to the repair proc

Developers will only allow a maximum of 1-hour timeout

Developers will only review up to maximum of 5 patches

https://zenodo.org/record/6303481

Concolic Program Repair 6
Ridwan Shariffdeen

ﬁ National University
of Singapore

Concolic Program Repair

Ridwan Shariffdeen’
National University of Singapore
Singapore
ridwan@comp.nus.edu.sg

Lars Grunske
Humboldt-Universitit zu Berlin
Germany
grunske@informatik hu-berlin.de

Abstract

Automated program repair reduces the manual cffort in fix-

n errors. However, existing repair techniques

nmdlﬁ a buggy program such that it passes given tests.

o not discriminate b

paches and patches that verft the svaiabl tests (breking
untested but desired functionality). We propose an integrated
approach for detecting and discarding overfitting patches via
systematic co-cxploration of the patch space and input space.
We leverage concolic path exploration to systematically tra-
verse the input space (and generate inputs). while ruling out
significant parts of the patch space. Given a long enough
time budget. this approach allows a significant reduction in
¥ o of bt el s shioms by o cxpsient
mplemented our technique in the form of a tool called
(‘I’R and evaluated its efficacy in reducing the patch space
by discarding overfitting patches from a pool of plausible
patches. We evaluated our approach for fixing real-world
software vulnerabilities and defects. for fixing functionality
errors in programs drawn from SV-COMP ben

in as wellas for test-

In our experiments. we obscrved a patch space reduction due
to our concolic exploration of up to 747% for fixing software
vulnerabilities and up to 637 for SV-COMP programs. Our
technique presents the viewpoint of gradual correctness —
repair run over longer time leads to less overfitting fixes.

CCS Concepts: » Software and its engineering — Soft-
ware testing and debugging.

chmarks use

Joint frst suthors

Permission to make digital o hard copies of all or part o this work for

personalor classroom us s granted withotfe provided tht c

e o Akt fo o o ol s

ol woekownedby s han ACN sty
or bl

S

Pk o oo

ting with

winal Canada

tachinery
51500

for (mrm
SN TR 4508 oo

NUS

National University
of Singapore

Yannic Noller"
National University of Singapore
Singapore
yannic.noller@acm.org

Abhik Roychoudhury
National University of Singapore

Singapore
abhik@comp.nus.edusg

Keywords: program repair. symbolic exccution. program
symhess puch overfting

ACM Reference Form:

R Shanfeen, vanic Noller LarsGransk,and ABhk Roy
choudhury. 2021. Concolic Program Repair. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programmin
guage Design and Implementation (PLDI '21). June
fual Canada. ACM, New York.NY. USA. 16 pages.
10.1145/345 3483, U540

1 Introduction

Automated Program Repair [14, 24] is an emerging tech-
nology which sccks to rectify errors or vulnerabilities in
software automatically. There are various applications of
automated repair. including improving programmer produc
tivity, r((lunng exposure to software security vulnerabilitics.
producing self-healing software systems. and even enabling
B P e

of correctness and formal specifications of the program’s
behavior are usually not available. it is common to use test
repair. The goal of automated repair is then
o b (i e Bk o A pimgpan o
pass the tests in the given test-suite. While test-suite driven
pair p a f the prog
problem, it gives rise to the phenomenon of “overfitting” [26.
30). The patched program may pass the tests in the given
test-suite while failing tests outside the test-suite, thereby
overfitting the test data. Such overfitting patches are called
plausible patches because they repair the failing test case(s).
they are not guaranteed to be correct, since they
fail tests outside the test-suite guiding the repair. Various
solutions to alleviate the patch overfitting issuc have been
studied to date, including symbolic specification inference
23, 25). machine learning-based prioritization of patches
[2. 20, 21) and fuzzing based test-suite augmentation [7).
These works do not guarantee any notion of correctness
of the patches, and cannot guarantec even the most basic
correctness criteria such as crash freedom.
In this work, we reflect on the problem of patch overfitting
2. 26. 30). in our attempt to produce patches which work

suites to g

PLDI 2021

Concolic Program Repair

Ridwan Shariffdeen, Yannic Noller, Lars Grunske, Abhik Roychoudhury

42nd ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI) 2021

Concolic Program Repair

Ridwan Shariffdeen

Key Idea: Gradual Correctness

Detecting and discarding over-fitting patches via systematic co-exploration of the patch
space and input space

Input Space

Patch Space

B
P2

S

H

P4

PS

Explored Path (Input Partition) (Piausivle Patch Set () Refined Patch Set () Correct Patch Set

Concolic Program Repair
Ridwan Shariffdeen

Our Solution

i
|
semantic approach incl. program synthesis 1 Input Space Patch Space |
=) avoids non-compilable patches | _ I
=) provides symbolic reasoning capabilities I initial test case refined patch set I
|
|
R : '
co-exploration of the input space and patch space : |
=) prune over-fitting patches I / |
=) enables gradual improvement I ,’l — ‘\ |
A N explored path plausible correct |
Ve N (input partition) patches patch (set) |
user-provided specification I |
i : infeasbility checks represented with |
I cles=onic ot iee it onSpat : in both directions abstract patches |
L m) key aspect to handle absence of test cases y I |
|

Concolic Program Repair

<

&

Concolic Program Repair
Ridwan Shariffdeen

National University
of Singapore

EANUS 5o
BS (%

Patch Representation

.. concrete patches .. abstract patches
x >0 x + 1 >y X >a, a € [0, 10]

x > 1 x = 1>y

x > 2 X + 2 >y X +a>y, a € [-10, 10]

/

==) generate and maintain smaller amount of patch candidates
==) allows refinement instead of just discarding
==) subsumes concrete patches

Our notion of an abstract patch represents a patch template with parameters.

)

Concolic Program Repair
Ridwan Shariffdeen

10

Abstract Patches

X, is the set of program variables

N
(Hp, Tp, ll)p) X € X, is the set of input variables

A is the set of template parameters

" 6,(X,,A) denotes the repaired (boolean or integer) expression

" T,(A) represents the conjunction of constraints 7,,(a;) on the
parameters a; € A included in 6,: T,(A) = Ageatp(a;)

" Y,(X,4) is the patch formula induced by inserting the
expression 6, into the buggy program

{patch is a condition \

R L
Nint32 rorows = roundun (nrows, v
if (CONDITION) return 0;
TR potencial divide-py-zero err’

. 0, =x>a

it (p) T, = = (a=—-10

return 0; p=Tp (a)-_ (a2 -10)
Y, =x>a

2. patch is a right hand-side of an assignment

0

, =x — a

y = p; T, =1,(a) = (a = —10)
\\ 1[)p =(y=x—a) /

Concolic Program Repair 11
Ridwan Shariffdeen

New kind of Infeasibility

.. In the input space

Path Reduction:
For every generated input, we check that
there is one patch that can exercise the
corresponding path. Otherwise, the path
will not be explored.

For example:
p:=x>3ANy>5Ap
p::(x:OVy:O)

.. In the patch space

Patch Reduction:

If a patch allows inputs to exercise a path
that violates the specification, we identify
this as a patch that overfits the valid set
of values and attempt to refine it.

parameters inputs
N ¥
Va,a,..,a, VX1 ,X3,.., Xy :

PX) AP, (X, A) AT, (A) = a(X)

path patch parameter gpecification
constraint constraint constraint

Concolic Program Repair 12
Ridwan Shariffdeen

Our Implementation

4 Input

Buggy
Program

'_I:
Failing test

1

Fix
Locations |-
L

User
KSpecification

~

independent from

any test suite

/ Concolic Program Repair

|
l 7 vewinpnt A

Patch Pool - : Input

Construction I

Generation

Concolic
Execution

pLletelsElin reduce

o - — o - —

Patch
Reduction

path
exploration

anytime algorithm
(gradual improvement)

refinement based on

explored paths and

specification

Concolic Program Repair
Ridwan Shariffdeen

13

Illustrative Example

4 N

CVE-2016-3623:

Input

.

) synthesis components

User

Buggy __ '
Program ,
e.g., exploit as
.' TIFF picture
Failing test —

case(s) |

/

Fix Locations _———’

source location, (fix template),

Auint32 rnrows =

static int
cvtRaster (TIFF* tif, uint32* raster, uint32 width...)
Divide by Zero in LibTIFF v4.0.6 | {

uint32 y;
tstrip t strip = 0;
tsize t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup (width, horizSubSampling);
uint32 rheight = roundup (height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?
rheight rowsperstrip);
roundup (nrows. . vertSubSampling) ;

if (CONDITION) return O;

* potentia
cc =

divide-by-zero error */
rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling)) ; I

| |
observation

\——

\ Specification

formula about correct

BE &

(assert (= false (= observation 0)))

behavior in SMT format

of Singapore

Concolic Program Repair

Ridwan Shariffdeen 14

Illustrative Example

Patch Space

Input Space
Initial test input
o3 x=7,y=0
P2 o------
P1
P4
P3
P2 -
P1
P4 s

PL:x>3 Ays<5A

69

->

A}

7 \

correct
patch (set)

plausible
patches

46

wintl3?2 roraws = roundun/lnrows,ve | x & horizSubSampling
if (CONDITION) return O; y = vertSubSampling
/rpotentral dIvIde=Dy=Z€eTo erry C 2 CONDITION

Patch Details

ID | Patch Template Parameter Constraint # Conc.
Patches
1 X>=a a=-10 Aax<7 18
2 |y<b b=1Ab<10 10
3 [x==ally==b (@=7 Ab=-10 Ab<10) |41
\Y
(h—ﬂ Aas>-10 A a(‘lﬂ)
D Patchr Template— | Parameter Constraint—— # Conc.—
Patches
1 X>=a a=-10 Aa<4 15
2 y<b b=1Ab<10 10
3 x==ally== b=0 Aa=-10 Aa<10 21
Concolic Program Repair 15
Ridwan Shariffdeen

Illustrative Example

BE &

9%

NUS

National University
of Singapore

Input Space

Patch Space

Patch Details

P4:x>3Ay>5AC

Initial test input -
3 ID | Patch Template | Parameter Constraint # Conc. Patches
P2 =)y correct Fi‘fh 1 | x>=a az-10Aas7? 18
- e : 2 [yeb b21Abs10 10
patches 3 | x==a||y==b | (=7 Ab=-10Ab<10)v | 41
P4 (b=0Aa2-10 Aa <10)
P3 ID | Patch Template | Parameter Constraint # Conc. Patches
2 : 1 | x>=a az-10Aas4 15
PL-T 2 b21Abs10 10
P4 3 b=0 Aaz-10 Aa<10 21
PLix>3Ays5A-C
P3 D Parameter Constraint # Conc. Patches
1 az-10 Aa<0 11
2 False 0
3 a=0Ab=0 1
ID | Patch Template | Parameter Constraint # Conc. Patches
+ | w=s False 0
3 x==a||y== a=0Ab=0 1
P3:x=3Ay=5A-C
= 2 ID | Patch Template | Parameter Constraint # Conc. Patches
3 [x==ally== a=0Aab=0 1

Concolic Program Repair
Ridwan Shariffdeen

16

Evaluation Setup

Techniques

CEGIS Benchmarks

ExtractFix ExtractFix

Angelix

Prophet ManyBugs
SV-COMP

of Singapore

Focus Areas

Vulnerability Repair
Test-based Repair

Fixing Assertions

Concolic Program Repair

Ridwan Shariffdeen

17

Evaluation Insights

v Lo L L e ecrocrelcre

Up 74% Patch Space Reduction

LibTIFF

Binutils 2)) 1 2 CPR can gradually refine the patch space
via concolic exploration

LibXML2 5 0 0 2 5

LibJPEG 4 1 - 2 4 CPR can be used for test-guided

FFmpeg 2)) 2 _ gene_ral-purpose repair and security
repair

Jasper 2 0 0 1 1

Coreutils 4 0 - 2 4 CPR is more effective than CEGIS wrt

Total 30 > 0 16 27 input and space exploration

Number of correct patches generated
for ExtractFix benchmark in 1h timeout

Concolic Program Repair 18
Ridwan Shariffdeen

Artifact

8 Download Pre-Print

© Dockerimage) Github Repo

CONCOLIC PROGRAM REPAIR

AUTOMATED PROGRAM REPAIR, PROGRAM SYNTHESIS, SYMBOLIC EXECUTION

DOl 10.5281/zenodo 4668317 docker pulls 88

Input Space Patch Space Automated progral
s in fixing

* Refined Patch Set Cormect Palch Set

L e
S,

technic

_— /\\
N\
)

. &

n with a nol

Plausible Paich Set

e cecanat. NEEPS://CPr-tool.github.io
http://doi.org/10.5281/zen0do0.4668317

Concolic Program Repair
Ridwan Shariffdeen

National University
of Singapore

https://cpr-tool.github.io
http://doi.org/10.5281/zenodo.4668317

