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Motivation

Goal: Employ symbolic execution for testing embedded software

Challenges

e Tight integration between software and hardware components
e Software interacts on a low abstraction level with the hardware
e Example: Low-level instruction for configuring interrupt handlers

= KLEE and tools build on it (e.g. FIE) do not support these
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Background: Instruction Set Architectures (ISAs)

. A Programming Language
ISA: Central interface between hard- and software
e Specifies the instructions supported by the CPU Software Compiler
e Instructions are used in binaries — binary analysis Binary Code

Observation: ISA specifications are very complex
e Thousands of pages of (mostly) natural language Hardware
® Problem: Need symbolic instruction semantics
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Prior Work: IR-based Execution of Binary Code

Binary Code

Idea: Lift binaries to an intermediate representation (IR)

= Symbolically execute the resulting, simpler IR ISA Semantics | Lifter for IR
v

Symbolic Intermediate
Semantics | Representation

Limitations:

@ Lifting is complex and may induce inaccuracies

A4

Symbolic
Execution

® No symbolic execution of ISA-specific instructions
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Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal machine-readable language
e Eases supporting code generation and similar use-cases
e Newer ISAs (e.g. RISC-V) provide an official formal spec
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Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal machine-readable language

e Eases supporting code generation and similar use-cases : / RlSC
e Newer ISAs (e.g. RISC-V) provide an official formal spec

Example

instxSemantics LBS..} = do
base <- readRegister rsl
byte <- loadByte (base ‘Add’ imm)
writeRegister rd (SExtByte $ FromImm byte)
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Symbolic Execution using Formal ISA Semantics
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LiIbRISCV: A versatile formal model for RISC-V

Contribution: Formal model tailored to creation of ISA interpreters
= Models instruction semantics independent of value representation
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LiIbRISCV: A versatile formal model for RISC-V
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BinSym: Symbolic Semantics for LIbRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
e Provides symbolic implementations of register file, memory, ...
e Maps LibRISCV expression language to Z3 bit-vectors
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BinSym: Symbolic Semantics for LIbRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
e Provides symbolic implementations of register file, memory, ...
e Maps LibRISCV expression language to Z3 bit-vectors

Implementation: https://github.com/agra-uni-bremen/BinSym
= Standard DSE implementation in Haskell
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https://github.com/agra-uni-bremen/BinSym

BinSym: Symbolic Semantics for LIbRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
e Provides symbolic implementations of register file, memory, ...
e Maps LibRISCV expression language to Z3 bit-vectors

Properties

@ Operates on the binary-level without IR-lifting
® More faithful to the (formal) ISA specification
® Supports low-level interactions with the architectural state
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Evaluation

Observation from prior work:
[Binary lifting] tends to inflate the code by a factor between 3 and 7.

— Poeplau et al., Systematic comparison of symbolic execution systems

RQ: What is the impact of code size inflation on symbolic execution speed?
= Compare symbolic execution speed on synthetic benchmarks
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Preliminary Results
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Conclusion

Key Insights:
@ Formal ISA semantics are beneficial for symbolic execution
@® Ease supporting architecture-specific low-level instructions
® Eliminating the IR abstraction might improve query complexity

More Information:
LIbRISCV https://doi.org/10.1007/978-3-031-38938-2_2
BinSym https://doi.org/10.48550/arXiv.2404.04132

Source code and artifacts are referenced in the papers.
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