] . .
d f k I Deutsches Forschungszentrum University
fiir Kiinstliche Intelligenz of Bremen
N D German Research Center for
CAE Artificial Intelligence

Symbolic Execution of Binary Code
based on Formal ISA Semantics

Soren Tempel, Tobias Brandt, Christoph Liith, Rolf Drechsler

tempel@uni-bremen.de
April 15th, 2024

Supported by the Scale4Edge BMBF project under contract no. 16ME0127.



Motivation

Goal: Employ symbolic execution for testing embedded software

Challenges

e Tight integration between software and hardware components
e Software interacts on a low abstraction level with the hardware
e Example: Low-level instruction for configuring interrupt handlers

= KLEE and tools build on it (e.g. FIE) do not support these

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 2/11



Background: Instruction Set Architectures (ISAs)

. A Programming Language
ISA: Central interface between hard- and software
e Specifies the instructions supported by the CPU Software Compiler
e Instructions are used in binaries — binary analysis Binary Code

Observation: ISA specifications are very complex
e Thousands of pages of (mostly) natural language Hardware
® Problem: Need symbolic instruction semantics

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics.



Prior Work: IR-based Execution of Binary Code

Binary Code

Idea: Lift binaries to an intermediate representation (IR)

= Symbolically execute the resulting, simpler IR ISA Semantics | Lifter for IR
v

Symbolic Intermediate
Semantics | Representation

Limitations:

@ Lifting is complex and may induce inaccuracies

A4

Symbolic
Execution

® No symbolic execution of ISA-specific instructions

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 4/11



Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal machine-readable language
e Eases supporting code generation and similar use-cases
e Newer ISAs (e.g. RISC-V) provide an official formal spec

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics.

P RISC

5/11

®



Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal machine-readable language

e Eases supporting code generation and similar use-cases : / RlSC
e Newer ISAs (e.g. RISC-V) provide an official formal spec

Example

instxSemantics LBS..} = do
base <- readRegister rsl
byte <- loadByte (base ‘Add’ imm)
writeRegister rd (SExtByte $ FromImm byte)

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 5/11



Symbolic Execution using Formal ISA Semantics

Binary Code

VN

v

ISA Semantics | Lifter for IR

v Formal Model
) ) Intermediate Language ISA Semantics
Symbolic Semantics . .2 boli .
Representation Primitives Symbolic Semantics
V' N
y N »S

A 4 v A 4

Symbolic Concrete

Execution Execution

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 6/11



LiIbRISCV: A versatile formal model for RISC-V

Contribution: Formal model tailored to creation of ISA interpreters
= Models instruction semantics independent of value representation

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 7/11



LiIbRISCV: A versatile formal model for RISC-V

Contribution: Formal model tailored to creation of ISA interpreters
= Models instruction semantics independent of value representation

Formal
ISA Model

Language

Primitives .

Abstract
Semantics

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics.

Concrete
Interpreter

Custom
Interpreters

Symbolic
Interpreter

1st Actual
Semantics

nth Actual
Semantics

7/11



BinSym: Symbolic Semantics for LIbRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
e Provides symbolic implementations of register file, memory, ...
e Maps LibRISCV expression language to Z3 bit-vectors

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 8/11



BinSym: Symbolic Semantics for LIbRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
e Provides symbolic implementations of register file, memory, ...
e Maps LibRISCV expression language to Z3 bit-vectors

Implementation: https://github.com/agra-uni-bremen/BinSym
= Standard DSE implementation in Haskell

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 8/11


https://github.com/agra-uni-bremen/BinSym

BinSym: Symbolic Semantics for LIbRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
e Provides symbolic implementations of register file, memory, ...
e Maps LibRISCV expression language to Z3 bit-vectors

Properties

@ Operates on the binary-level without IR-lifting
® More faithful to the (formal) ISA specification
® Supports low-level interactions with the architectural state

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 8/11



Evaluation

Observation from prior work:
[Binary lifting] tends to inflate the code by a factor between 3 and 7.

— Poeplau et al., Systematic comparison of symbolic execution systems

RQ: What is the impact of code size inflation on symbolic execution speed?
= Compare symbolic execution speed on synthetic benchmarks

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 9/11



Preliminary Results

450

I BinSym
4001 mm SymEx-VP

3501

Execution time (s)
=) = N N w
o w1 o w o
o o o o o

v
o

o

base64-encode

I BinSec
EEE angr

bubble-sort

393

is-prime insertion-sort uri-parser

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 10/11



Conclusion

Key Insights:
@ Formal ISA semantics are beneficial for symbolic execution
@® Ease supporting architecture-specific low-level instructions
® Eliminating the IR abstraction might improve query complexity

More Information:
LIbRISCV https://doi.org/10.1007/978-3-031-38938-2_2
BinSym https://doi.org/10.48550/arXiv.2404.04132

Source code and artifacts are referenced in the papers.

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 11/11


https://doi.org/10.1007/978-3-031-38938-2_2
https://doi.org/10.48550/arXiv.2404.04132

