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Motivation

Goal: Employ symbolic execution for testing embedded software

Challenges

• Tight integration between software and hardware components
• Software interacts on a low abstraction level with the hardware
• Example: Low-level instruction for configuring interrupt handlers

⇒ KLEE and tools build on it (e.g. FIE) do not support these
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Background: Instruction Set Architectures (ISAs)

ISA: Central interface between hard- and software
• Specifies the instructions supported by the CPU
• Instructions are used in binaries→binary analysis

Observation: ISA specifications are very complex
• Thousands of pages of (mostly) natural language
• Problem: Need symbolic instruction semantics
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Prior Work: IR-based Execution of Binary Code

Idea: Lift binaries to an intermediate representation (IR)
⇒ Symbolically execute the resulting, simpler IR

Limitations:
1 Lifting is complex and may induce inaccuracies
2 No symbolic execution of ISA-specific instructions
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Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal machine-readable language
• Eases supporting code generation and similar use-cases
• Newer ISAs (e.g. RISC-V) provide an official formal spec

Example

instrSemantics LB{..} = do
base <- readRegister rs1
byte <- loadByte (base ‘Add‘ imm)
writeRegister rd (SExtByte $ FromImm byte)
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Symbolic Execution using Formal ISA Semantics
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LibRISCV: A versatile formal model for RISC-V

Contribution: Formal model tailored to creation of ISA interpreters
⇒Models instruction semantics independent of value representation
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BinSym: Symbolic Semantics for LibRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
• Provides symbolic implementations of register file, memory, …
• Maps LibRISCV expression language to Z3 bit-vectors
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BinSym: Symbolic Semantics for LibRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
• Provides symbolic implementations of register file, memory, …
• Maps LibRISCV expression language to Z3 bit-vectors

Implementation: https://github.com/agra-uni-bremen/BinSym
⇒ Standard DSE implementation in Haskell
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BinSym: Symbolic Semantics for LibRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
• Provides symbolic implementations of register file, memory, …
• Maps LibRISCV expression language to Z3 bit-vectors

Properties

1 Operates on the binary-level without IR-lifting
2 More faithful to the (formal) ISA specification
3 Supports low-level interactions with the architectural state
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Evaluation

Observation from prior work:
[Binary lifting] tends to inflate the code by a factor between 3 and 7.

— Poeplau et al., Systematic comparison of symbolic execution systems

RQ:What is the impact of code size inflation on symbolic execution speed?
⇒ Compare symbolic execution speed on synthetic benchmarks
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Preliminary Results
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Conclusion

Key Insights:
1 Formal ISA semantics are beneficial for symbolic execution
2 Ease supporting architecture-specific low-level instructions
3 Eliminating the IR abstraction might improve query complexity

More Information:
LibRISCV https://doi.org/10.1007/978-3-031-38938-2_2
BinSym https://doi.org/10.48550/arXiv.2404.04132

Source code and artifacts are referenced in the papers.
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