
Symbolic Execution of Binary Code
based on Formal ISA Semantics

Sören Tempel, Tobias Brandt, Christoph Lüth, Rolf Drechsler
tempel@uni-bremen.de

April 15th, 2024

Supported by the Scale4Edge BMBF project under contract no. 16ME0127.



Motivation

Goal: Employ symbolic execution for testing embedded software

Challenges

• Tight integration between software and hardware components
• Software interacts on a low abstraction level with the hardware
• Example: Low-level instruction for configuring interrupt handlers

⇒ KLEE and tools build on it (e.g. FIE) do not support these

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 2 / 11



Background: Instruction Set Architectures (ISAs)

ISA: Central interface between hard- and software
• Specifies the instructions supported by the CPU
• Instructions are used in binaries→binary analysis

Observation: ISA specifications are very complex
• Thousands of pages of (mostly) natural language
• Problem: Need symbolic instruction semantics

Programming Language

Compiler

Binary Code

CPU Architecture

Microarchitecture

Gates & Circuits

Physics

ISA

Hardware

Software

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 3 / 11



Prior Work: IR-based Execution of Binary Code

Idea: Lift binaries to an intermediate representation (IR)
⇒ Symbolically execute the resulting, simpler IR

Limitations:
1 Lifting is complex and may induce inaccuracies
2 No symbolic execution of ISA-specific instructions

Binary Code

Intermediate
Representation

Symbolic
Execution

Lifter for IR

Symbolic
Semantics

ISA Semantics

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 4 / 11



Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal machine-readable language
• Eases supporting code generation and similar use-cases
• Newer ISAs (e.g. RISC-V) provide an official formal spec

Example

instrSemantics LB{..} = do
base <- readRegister rs1
byte <- loadByte (base ‘Add‘ imm)
writeRegister rd (SExtByte $ FromImm byte)

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 5 / 11



Formal Specifications of ISA Semantics

Idea: Describe ISA in a formal machine-readable language
• Eases supporting code generation and similar use-cases
• Newer ISAs (e.g. RISC-V) provide an official formal spec

Example

instrSemantics LB{..} = do
base <- readRegister rs1
byte <- loadByte (base ‘Add‘ imm)
writeRegister rd (SExtByte $ FromImm byte)

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 5 / 11



Symbolic Execution using Formal ISA Semantics

Formal Model

Binary Code

Intermediate
Representation

Language
Primitives

Symbolic
Execution

Concrete
Execution

Symbolic Semantics ISA Semantics
Symbolic Semantics

Lifter for IRISA Semantics

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 6 / 11



LibRISCV: A versatile formal model for RISC-V

Contribution: Formal model tailored to creation of ISA interpreters
⇒Models instruction semantics independent of value representation

Formal
ISA Model

Abstract
Semantics ··

·

1st Actual
Semantics

nth Actual
Semantics

Language
Primitives

Concrete
Interpreter

Symbolic
Interpreter

Custom
Interpreters

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 7 / 11



LibRISCV: A versatile formal model for RISC-V

Contribution: Formal model tailored to creation of ISA interpreters
⇒Models instruction semantics independent of value representation

Formal
ISA Model

Abstract
Semantics ··

·

1st Actual
Semantics

nth Actual
Semantics

Language
Primitives

Concrete
Interpreter

Symbolic
Interpreter

Custom
Interpreters

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 7 / 11



BinSym: Symbolic Semantics for LibRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
• Provides symbolic implementations of register file, memory, …
• Maps LibRISCV expression language to Z3 bit-vectors

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 8 / 11



BinSym: Symbolic Semantics for LibRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
• Provides symbolic implementations of register file, memory, …
• Maps LibRISCV expression language to Z3 bit-vectors

Implementation: https://github.com/agra-uni-bremen/BinSym
⇒ Standard DSE implementation in Haskell

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 8 / 11

https://github.com/agra-uni-bremen/BinSym


BinSym: Symbolic Semantics for LibRISCV

Contribution: Actual semantics for symbolic execution of RISC-V binaries
• Provides symbolic implementations of register file, memory, …
• Maps LibRISCV expression language to Z3 bit-vectors

Properties

1 Operates on the binary-level without IR-lifting
2 More faithful to the (formal) ISA specification
3 Supports low-level interactions with the architectural state

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 8 / 11



Evaluation

Observation from prior work:
[Binary lifting] tends to inflate the code by a factor between 3 and 7.

— Poeplau et al., Systematic comparison of symbolic execution systems

RQ:What is the impact of code size inflation on symbolic execution speed?
⇒ Compare symbolic execution speed on synthetic benchmarks

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 9 / 11



Preliminary Results

base64-encode bubble-sort is-prime insertion-sort uri-parser0

50

100

150

200

250

300

350

400

450

Ex
ec

ut
io

n 
tim

e 
(s

)

170

52

98
67 54

217

44

129 122

67

229

82

136 128
94

N/A

257

207

393

322

BinSym
SymEx-VP

BinSec
angr

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 10 / 11



Conclusion

Key Insights:
1 Formal ISA semantics are beneficial for symbolic execution
2 Ease supporting architecture-specific low-level instructions
3 Eliminating the IR abstraction might improve query complexity

More Information:
LibRISCV https://doi.org/10.1007/978-3-031-38938-2_2
BinSym https://doi.org/10.48550/arXiv.2404.04132

Source code and artifacts are referenced in the papers.

Tempel et al.: Symbolic Execution of Binary Code based on Formal ISA Semantics. 11 / 11

https://doi.org/10.1007/978-3-031-38938-2_2
https://doi.org/10.48550/arXiv.2404.04132

